Lí thuyết nguyên hàm | SGK Toán lớp 12 – Loigiaihay.com

Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Lí thuyết nguyên hàm | SGK Toán lớp 12 – Loigiaihay.com. Bài viết nguyen ham cua ham so tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.

1. Nguyên hàm và tính chất

Bạn Đang Xem: Lí thuyết nguyên hàm | SGK Toán lớp 12 – Loigiaihay.com

a. Định nghĩa

Kí hiệu (K) là khoảng, đoạn hoặc nửa khoảng của (R).

Cho hàm số (f(x)) xác định trên (K).

Hàm số (F(x)) được gọi là nguyên hàm của hàm số (f(x)) trên (K) nếu (F'(x) = f(x)) với mọi (x ∈ K).

Xem Thêm  Deadline là gì? Ý nghĩa và cách dùng của từ “deadline”

b. Định lý

1) Nếu (F(x)) là một nguyên hàm của hàm số (f(x)) trên K thì với mỗi hằng số (C), hàm số (G(x) = F(x)+C) cũng là một nguyên hàm của hàm số (f(x)) trên (K).

2) Ngược lại, nếu (F(x)) là một nguyên hàm của hàm số (f(x)) trên (K) thì mọi nguyên hàm của (f(x)) trên (K) đều có dạng (F(x) + C) với (C) là một hằng số tùy ý.

Kí hiệu họ nguyên hàm của hàm số (f(x)) là (∫f(x)dx)

Khi đó : (∫f(x)dx =F(x) + C , C ∈ R.)

c. Tính chất của nguyên hàm

(∫f(x)dx = F(x) + C, C ∈ R.)

(∫kf(x)dx =k ∫f(x)dx )(với k là hằng số khác 0)

(∫(f(x) ± g(x)) = ∫f(x)dx ± ∫g(x)dx)

Xem Thêm : 10 kiểu tóc lob đẹp dẫn đầu xu hướng cho mọi gương mặt

d. Sự tồn tại nguyên hàm

Định lí: Mọi hàm số (f(x)) liên tục trên (K) đều có nguyên hàm trên (K).

Bảng nguyên hàm của các hàm số thường phát giác

Nguyên hàm của hàm số sơ cấp

Nguyên hàm của hàm hợp

(int 0dx = C)

(int dx = x + C)

(int x^{alpha }dx) = (frac{x^{alpha +1}}{alpha +1} +C) ((alpha≠ -1))

(int frac{1}{x}dx =lnleft | x right | +C)

(int e^{x}dx = e^{x} +C)

(int a^{x}dx = frac{a^{x}}{lna} + C (a>0, a ≠ 1))

(int cosxdx = sinx + C)

(int sinxdx = – cosx + C)

(int frac{1}{(cos^{2}x)}dx = tanx + C)

Xem Thêm  Hứa Minh Đạt là ai? Tiểu sử, đời tư diễn viên Hứa Minh Đạt

(int frac{1}{(sin^{2}x)}dx = – cotx + C)

(int u^{alpha }dx = frac{u^{alpha +1}}{u’.(alpha +1)}+ C)

Xem Thêm : Trò chơi điện tử là món tiêu khiển hấp dẫn. Nhiều bạn vì mải chơi

(int {frac{1}{u}} dx = frac{{ln|u|}}{{u’}} + C)

(int {{e^u}} dx = frac{{{e^u}}}{{u’}} + C)

(int {{a^u}} dx = frac{{{a^u}}}{{u’.lna}} + C)

(int {cosudx = frac{{sinu}}{{u’}} + C} )

(int {sinudx = {rm{ }}frac{{ – cosu}}{{u’}}{rm{ }} + C} )

(int {frac{1}{{(co{s^2}u)}}} du = {rm{ }}frac{{tanu}}{{u’}} + C)

(int {frac{1}{{(si{n^2}u)}}} du = frac{{ – cotu}}{{u’}} + C)

2. Phương pháp tìm nguyên hàm

a) Phương pháp đổi biến số

Định lý 1: Nếu (int {fleft( u right)du} = Fleft( u right) + C) và (u = uleft( x right)) là hàm số có đạo hàm liên tục thì (int {fleft( {uleft( x right)} right)u’left( x right)dx} = Fleft( {uleft( x right)} right) + C)

Hệ quả: (int {fleft( {ax + b} right)dx} = frac{1}{a}Fleft( {ax + b} right) + Cleft( {a ne 0} right))

b. phương pháp tính nguyên hàm từng phần

Định lý 2: Nếu hai hàm số (u = uleft( x right)) và (y = vleft( x right)) có đạo hàm liên tục trên (K) thì (int {uleft( x right)v’left( x right)dx} = uleft( x right)vleft( x right) – int {u’left( x right)vleft( x right)dx} ).

Chú ý: Viết gọn (int {udv} = uv – int {vdu} ).

Loigiaihay.com

 

Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp

Bài viết cùng chủ đề

Xem Thêm  Sim Đầu Số 092 Vietnamobile Số Đẹp Giá Rẻ – KhoSim

Recommended For You

About the Author: badmin

Leave a Reply

Your email address will not be published. Required fields are marked *