Nội dung chính
Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Công Thức tính bán kính Đường Tròn Ngoại Tiếp Tam Giác & bài. Bài viết ban kinh duong tron ngoai tiep tam giac tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.
- Cách cập nhật adobe flash player mới nhất (mọi trình duyệt)
- Cách chèn thêm cột trong Excel cực đơn giản, dễ dàng có ví dụ chi tiết
- Cách làm lại sim Viettel bị mất – Thủ thuật
- Biển số xe 76 là tỉnh nào? Ký hiệu biển số Quãng Ngãi theo từng
- Cuộc chiến tranh xâm lược Việt Nam lần thứ nhất của Thực dân Pháp
I. ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC LÀ GÌ
Đường tròn ngoại tiếp tam giác hay còn được gọi là tam giác nội tiếp đường tròn là đường tròn đi qua ba đỉnh của tam giác.
Bạn Đang Xem: Công Thức tính bán kính Đường Tròn Ngoại Tiếp Tam Giác & bài
Đường tròn ngoại tiếp tam giác có tính chất:
- Mỗi một tam giác chỉ có duy nhất 1 đường tròn ngoại tiếp.
- Tâm của đường tròn ngoại tiếp tam giác là giao điểm giữa 3 đường trung trực của tam giác đó do đó nửa đường kính của đường tròn ngoại tiếp tam giác chính bằng khoảng cách từ tâm đến 3 đỉnh của tam giác.
- Tâm của đường tròn ngoại tiếp tam giác vuông là chính trung điểm của cạnh huyền.
- Đối với tam giác đều, đường tròn ngoại tiếp và nội tiếp tam giác có cùng tâm đường tròn với nhau.
Ví dụ: △ABC trên nội tiếp đường tròn (O, R =OA).
II. CÔNG THỨC ĐỘ DÀI CỦA BÁN KÍNH ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC
Có 4 phương pháp tính độ dài bán kính đường tròn ngoại tiếp tam giác (R): Sử dụng công thức định lý sin trong tam giác, công thức diện tích trong tam giác, công thức tam giác vuông, sử dụng tọa độ.
Công thức định lý sin trong tam giác:
Áp dụng định lý sin trong tam giác ta có bán kính đường tròn ngoại tiếp tam giác bằng độ dài một cạnh tam giác chia cho sin của góc chiếu cạnh đấy:
Xem Thêm : So sánh cổ phiếu và trái phiếu dựa trên các tiêu chí căn bản – TIM SEN
Trong đó:
- R: bán kính đường tròn ngoại tiếp tam giác
- a, b. c: Độ dài các cạnh của hình tam giác.
- A, B, C: Các góc của hình tam giác.
Công thức diện tích trong tam giác
Áp dụng công thức diện tích trong tam giác ta có bán kính đường tròn ngoại tiếp tam giác bằng tích độ dài các cạnh tam giác chia cho 4 lần diện tích tam giác ấy:
Xem Thêm : So sánh cổ phiếu và trái phiếu dựa trên các tiêu chí căn bản – TIM SEN
Trong đó:
- S: Diện tích của hình tam giác.
- a, b. c: Độ dài các cạnh của hình tam giác.
- A, B, C: Các góc của hình tam giác.
- R: bán kính đường tròn ngoại tiếp tam giác.
Công thức tam giác vuông
Tâm của đường tròn ngoại tiếp tam giác vuông là chính trung điểm của cạnh huyền, chính vì thế, bán kính đường tròn ngoại tiếp tam giác vuông chính bằng nửa độ dài của cạnh huyền đó.
Sử dụng tọa độ
Tìm tọa độ tâm O đường tròn ngoại tiếp tam giác ABC rồi tìm tọa độ một trong ba đỉnh A, B, C (nếu chưa có) từ đó tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C.
IV. BÀI TẬP MINH HỌA VỀ CÔNG THỨC ĐỘ DÀI CỦA BÁN KÍNH ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC
Ví dụ: Cho hình △ABC có độ dài các cạnh của hình tam giác lần lượt là là 8cm, 10cm, 12cm. Xác định bán kính đường tròn ngoại tiếp △ABC bằng bao lăm?
Áp dụng công thức chu vi tam giác ta có, chu vi △ABC là:
P= 8 + 10 + 12 = 30 (cm)
Xem Thêm : MSB Là bank Gì? bank MSB Có Uy Tín Không?
⇒ nửa chu vi của △ABC là: p = 30 : 2= 15 (cm)
Áp dụng công thức tính diện tích, ta có diện tích △ABC là:
S² = p x (p – a) x (p – b) x (p – c) = 15 x (15 -8) x (15 -10) x (15 -12)= 1575
⇒ S = ( sqrt{1575})
Áp dụng công thức ta có bán kính đường tròn ngoại tiếp △ABC là:
( R={a.b.cover 4S}={8.12.10over sqrt{1575}}={64 sqrt 7 over 7})
Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp