Tính chất tâm của đường tròn ngoại tiếp tam giác vuông, cân, đều

Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Tính chất tâm của đường tròn ngoại tiếp tam giác vuông, cân, đều. Bài viết ban kinh duong tron ngoai tiep tam giac deu tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.

1. Đường tròn ngoại tiếp tam giác

Theo định nghĩa, đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó và tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

Bạn Đang Xem: Tính chất tâm của đường tròn ngoại tiếp tam giác vuông, cân, đều

tâm đường tròn ngoại tiếp tam giác cân

Bức Ảnh minh họa đường tròn ngoại tiếp tam giác

2. Tâm của đường tròn ngoại tiếp tam giác vuông, cân, đều

Giao của 3 đường trung trực trong tam giác là tâm đường tròn ngoại tiếp (hoặc có thể là 2 đường trung trực).

Tính chất đường tròn ngoại tiếp tam giác vuông, cân, đều đó là:

  • Mỗi tam giác chỉ có 1 đường tròn ngoại tiếp.

  • Tâm của đường tròn ngoại tiếp tam giác là giao điểm giữa 3 đường trung trực của tam giác. Do vậy tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền. Đối với tam giác cân và tam giác đều, tâm đường tròn ngoại tiếp và nội tiếp tam giác trùng với nhau là giao điểm giữa 3 đường trung trực của tam giác

Xem Thêm  Nhà Trần và việc đắp đê Giải bài tập Lịch sử 4 trang 39 – Download.vn

3. cách tính bán kính tâm đường tròn ngoại tiếp tam giác

Các công thức tính bán kính đường tròn ngoại tiếp tam giác:

  • Công thức tính bán kính đường tròn ngoại tiếp tam giác: R = (a x b x c) : 4S.

  • Công thức tính nửa đường kính đường tròn ngoại tiếp của góc A:

  • Công thức tính nửa đường kính đường tròn ngoại tiếp của góc B:

  • Công thức tính nửa đường kính đường tròn ngoại tiếp của góc C:

Trong đó:

  • r: bán kính đường tròn ngoại tiếp tam giác

  • S: Diện tích tam giác.

  • a, b, c: Độ dài các cạnh của hình tam giác.

  • A, B, C: Các góc của hình tam giác.

các phương pháp tính bán kính tâm đường tròn ngoại tiếp tam giác:

Cách đầu tiên chính là sử dụng định lí sin trong tam giác để tính bán kính đường tròn ngoại tiếp tam giác.

Ví dụ: Cho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó:

tâm đường tròn ngoại tiếp tam giác cân

Xem Thêm : 9999+ Hình Ảnh Gái Xinh, Dễ Thương và Đáng Yêu Nhất 2023

Trong đó có:

  • R: Bán kính đường tròn ngoại tiếp tam giác

  • a, b, c: Độ dài các cạnh của hình tam giác.

  • A, B, C: Các góc của hình tam giác.

Bên cạnh cách dùng định lý sin, chúng ta cũng có thể sử dụng diện tích trong tam giác để tính bán kính đường tròn ngoại tiếp tam giác:

Xem Thêm : 9999+ Hình Ảnh Gái Xinh, Dễ Thương và Đáng Yêu Nhất 2023

Trong đó có:

  • R: Bán kính đường tròn ngoại tiếp tam giác.

  • S: Diện tích tam giác.

  • a, b, c: Độ dài các cạnh của hình tam giác.

  • A, B, C: Các góc của hình tam giác.

Xem Thêm  Phủ Chúa Trịnh – 1 thời lầu son gác tía – Báo CAND

Ngoài ra, tính bán kính đường tròn khi sử dụng trong hệ tọa độ cũng là một cách được rất nhiều người ưa chuộng. Sau đây là các bước cơ bản để tính bán kính:

  • Tìm tọa độ tâm O của đường tròn ngoại tiếp tam giác ABC.

  • Tìm tọa độ một trong ba đỉnh A, B, C (nếu chưa có).

  • Tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C, đây chính là bán kính cần tìm: R=OA=OB=OC.

Sử dụng tam giác vuông để tính bán kính có lẽ là cách cơ bản nhất. Tâm của đường tròn ngoại tiếp trong tam giác vuông là trung điểm của cạnh huyền.

Do vậy, bán kính đường tròn ngoại tiếp tam giác vuông là bằng nửa độ dài của cạnh huyền đó.

Bài tập ví dụ về bán kính đường tròn ngoại tiếp tam giác

Bài tập 1: Cho tam giác MNP vuông tại N, và MN = 6cm, NP = 8cm. Xác định bán kính đường tròn ngoại tiếp tam giác MNP bằng bao lăm?

tâm đường tròn ngoại tiếp tam giác cân

Áp dụng định lý Pytago, ta có:

PQ = 1/2 MP

=> NQ = QM = QP = 5cm

Xem Thêm : Giới thiệu về tiềm năng khoáng sản Việt Nam

Gọi D là trung điểm MP.

=> ∆MNP vuông tại N có NQ là đường trung tuyến ứng với cạnh huyền MP

=> Q là tâm đường tròn ngoại tiếp ∆MNP

=> Đường tròn ngoại tiếp ∆MNP là trung điểm Q của cạnh huyền và bán kính đường tròn ngoại tiếp MNP là R = MQ = 5cm

Bài tập 2: Cho tam giác ABC có góc B bằng 45° và AC = 4. Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC.

Ta có: b = AC = 4

Áp dụng định lý sin trong tam giác ABC ta có:

tâm đường tròn ngoại tiếp tam giác cân

Bài tập 3: Cho tam giác MNP đều với cạnh bằng 12cm. Xác định tâm và bán kính đường tròn ngoại tiếp ∆MNP?

tâm đường tròn ngoại tiếp tam giác cân

Gọi Q, I lần lượt là trung điểm của cạnh NP, MN và MQ giao với PI tại O.

Vì ∆MNP đều nên đường trung tuyến cũng là đường cao, đường phân giác, đường trung trực của tam giác.

Xem Thêm  ASAP là gì? Ý nghĩa của Asap trong giao tiếp và trong buôn bán thương mại

=> O là tâm của đường tròn ngoại tiếp.

=> ∆MNP có PI là đường trung tuyến nên PI cũng là đường cao.

Từ đó áp dụng định lý Pytago:

PI² = MP² – MI² = 122 – 62 = 108 (cm).

=> PI = 6√3cm.

Bởi O là trọng tâm của ∆MNP nên:

PO = 2/3 PI = 2/3 x 6√3 = 4√3 (cm).

Trên đây là một số chia sẻ của mình về tính chất tâm của đường tròn ngoại tiếp tam giác cân, vuông, đều và cách tính bán kính đường tròn ngoại tiếp. cám ơn Anh chị em đã theo dõi bài viết nhé.

 

Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp

Recommended For You

About the Author: badmin

Leave a Reply

Your email address will not be published. Required fields are marked *