Nội dung chính
Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Khối lăng trụ là gì? Công thức tính thể tích khối lăng trụ – VOH. Bài viết khoi lang tru la gi tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.
- 9 nốt ruồi dưới lòng bàn chân thường hay xuất hiện có ý nghĩa gì?
- Biến dị tổ hợp là gì? Biến dị tổ hợp được xuất hiện trong bề ngoài
- Phi dị tính là gì? 20 thuật ngữ về LGBTQ+ có thể bạn chưa biết
- Background học online vui vẻ hài hước, chất vô cùng cho học sinh
- Đầu số 0949 Là Mạng Gì? Thông Tin Chi Tiết Cho Đầu Số 0949
Ở Toán học bậc THPT, chủ đề về hình học không gian là các bài toán xác định giao tuyến, giao điểm, thiết diện đối với bài tập tính toán là các dạng bài về khoảng cách từ điểm đến bề mặt, từ điểm đến đường thẳng và các dạng toán về tính góc hợp bởi đường thẳng và bề mặt, bề mặt và mặt bằng. Tất cả nội dung trên sẽ là công cụ giúp chúng ta tóm tắt dữ kiện từ đề bài đối với dạng toán tính thể tích khối đa diện nói chung và thể tích khối lăng trụ nói riêng.
Bạn Đang Xem: Khối lăng trụ là gì? Công thức tính thể tích khối lăng trụ – VOH
1. Khối lăng trụ là gì?
Cho hai mặt song song (α) và (α‘). Trên (α) ta lấy đa giác lồi A1A2…An , qua các đỉnh này ta dựng các đường thẳng song song cắt (α’) tại A1‘A2‘…An‘
Hình gồm có hai đa giác A1A2…An , A1‘A2‘…An‘ và các hình bình hành A1A2A1‘A2‘,… được gọi là hình lăng trụ.
Chú ý:
Các mặt đáy của hình lăng trụ bằng nhau và song song với nhau.
Các mặt bên là các hình bình hành.
Hai đáy hình lăng trụ là hai đa giác bằng nhau.
2. Khối lăng trụ đặc biệt
∗ Hình lăng trụ đứng: Là hình lăng trụ có cạnh bên vuông góc với đáy.
• Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ.
• Lúc đó các mặt bên của hình lăng trụ đứng là các hình chữ nhật.
∗ Hình lăng trụ đều: Là hình lăng trụ đứng có đáy là đa giác đều.
• Các mặt bên của lăng trụ đều là các hình chữ nhật bằng nhau.
∗ Hình hộp: Là hình lăng trụ có đáy là hình bình hành.
∗ Hình hộp đứng: Là hình lăng trụ đứng có đáy là hình bình hành.
∗ Hình hộp chữ nhật: Là hình hộp đứng có đáy là hình chữ nhật
∗ Hình lập phương: Là hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông.
Bên cạnh đó cần chú ý:
2.1. Hình lăng trụ đứng
- Hình lăng trụ tam giác đều có đáy là tam giác đều.
- Hình lăng trụ tứ giác đều có đáy là hình vuông.
2.2. Hình hộp
- Hình hộp đứng có mặt bên là hình chữ nhật, mặt đáy là hình bình hành.
- Hình hộp chữ nhật có tất cả các mặt là hình chữ nhật
- Hình lập phương là có tất cả các mặt là hình vuông.
2.3. Hình lăng trụ tứ giác đều
Định nghĩa:
- Hình lăng trụ tứ giác đều là hình lăng trụ đều có đáy là hình vuông.
2.4. Hình lăng trụ ngũ giác đều
Định nghĩa:
• Hình lăng trụ ngũ giác đều là hình lăng trụ đều có đáy là hình ngũ giác
• Hình lăng trụ ngũ giác đều có 15 cạnh.
2.5. Hình lăng trụ lục giác đều
Định nghĩa:
• Hình lăng trụ lục giác đều là hình lăng trụ đều có đáy là lục giác.
3. Công thức tính thể tích khối lăng trụ
V = B . h
Trong đó:
• B là diện tích đáy,
• h là chiều cao khối lăng trụ
4. cách tính thể tích các loại khối lăng trụ như thế nào?
4.1. Thể tích khối lăng trụ đứng
V = B . h
Trong đó:
• B là diện tích đáy.
• h là độ dài cạnh bên của khối lăng trụ.
4.2. Thể tích khối lăng trụ tam giác đều
V = B . h
Trong đó:
• B là diện tích đáy (đáy là tam giác đều)
• h là độ dài cạnh bên của khối lăng trụ.
4.3. Thể tính khối lăng trụ xiên
V = B . h
Trong đó:
• B là diện tích đáy
• h là khoảng cách đường cao hạ từ đỉnh bất kì xuống bề mặt đáy
5. Bài tập tính thể tích khối lăng trụ
Bài 1: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB = a, BB’ = 2a. Tính thể tích V của khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Độ dài chiều cao của khối lăng trụ là
h = BB’ = 2a.
Xem Thêm : Bộ sưu bộ Bức Ảnh ngầu, avatar ngầu cho nam nữ
Vì đáy là tam giác vuông cân tại A nên
AB = AC = a.
Diện tích đáy là:
Vậy thể tích V của khối lăng trụ ABC.A’B’C’ là:
→ Chọn câu B.
Bài 2: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AB’ = 2a. Tính thể tích V của khối lăng trụ ABC.A’B’C’
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Tam giác ABC là tam giác đều nên có diện tích là:
Do A’B’A vuông cân tại A’
Nên A’A = .
Vậy thể tích V của khối lăng trụ là
→ Chọn câu C.
Bài 3: Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A và AB = a, AC = , mặt bằng (A’BC) tạo với đáy một góc 30°. Thể tích của khối lăng trụ ABC.A’B’C’ là:
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Diện tích đáy của lăng trụ là:
Kẻ với M thuộc BC.
Vì nên
Suy ra
Tam giác ABC vuông tại A nên ta có:
Suy ra .
Ta có:
Vậy thể tích của khối lăng trụ ABC.A’B’C’ là:
→ Chọn câu A.
Bài 4: Tính thể tích của khối lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng 2a.
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Do ABC.A’B’C’ là lăng trụ đều nên đường cao của lăng trụ là BB’ = 2a.
Diện tích đáy là:
Vậy thể tích của khối lăng trụ là:
→ Chọn câu A.
Bài 5: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, (AB’C’) hợp với mặt đáy một góc 60°. Tính thể tích của khối lăng trụ ABC.A’B’C’
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Vì hình lăng trụ tam giác đều nên đáy là tam giác đều cạnh a.
Xem Thêm : Soạn bài Sóng của Xuân Quỳnh – Ngữ văn 12 – HOC247
Diện tích đáy là
Gọi M là trung điểm B’C’. Do tam giác A’B’C’ đều nên A’M ⊥ B’C’.
Kết hợp với AA’ ⊥ B’C’ suy ra B’C’ ⊥ (AMA’)
⇒ B’C’ ⊥ AM.
Do đó ((AB’C’);(A’B’C’)) = = 60°.
Xét tam giác AMA’ vuông tại A’
Vậy thể tích của khối lăng trụ ABC.A’B’C’ là
→ Chọn câu D.
Bài 6: Cho lăng trụ xiên tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, biết cạnh bên là và hợp với đáy ABC một góc 60°. Tính thể tích lăng trụ
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Kẻ C’H ⊥ (ABC) nên H là hình chiếu của CC’ trên (ABC)
Ta có
Xét tam giác vuông ΔCHC’, ta có:
Do tam giác ABC là tam giác đều nên:
Vậy thể tích lăng trụ là:
V =
→ Chọn câu A.
Bài 7: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của A’ trên (ABC) là trung điểm BC, A’A hợp với mặt đáy một góc 60°. Tính thể tích của khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Do A’H ⊥ (ABC) ⇒ (A’A;(ABC)) =
Xét tam giác A’HA vuông tại H, ta có:
Do ABC là tam giác đều nên
Diện tích tam giác ABC là
Vậy thể tích của khối lăng trụ ABC.A’B’C’ là
→ Chọn câu D.
Bài 8: Cho hình lăng trụ ABC.A’B’C’, đều có cạnh bằng a, AA’ = a và đỉnh A’ cách đều A, B, C. Gọi M là trung điểm của cạnh BC. Thể tích khối lăng trụ ABC.A’B’C’ là:
A.
B.
C.
D.
ĐÁP ÁN
∗ Cách giải
Gọi O là tâm tam giác đều ABC, do A’ cách đều các đỉnh A, B, C
Nên hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với trọng tâm O.
Do đó A’O ⊥ (ABC)
Ta có tam giác ABC đều cạnh a nên:
Diện tích tam giác ABC là:
Xét tam giác A’OA vuông tại O, ta có:
Thể tích khối lăng trụ ABC.A’B’C’ là:
→ Chọn câu B.
Chủ đề này đã khái quát thế nào là khối lăng trụ đồng thời phân biệt cụ thể giữa các loại khối lăng trụ. Công thức tính thể tích khối lăng trụ và phương pháp bắt buộc phải lựa chọn phù hợp cho từng dạng hình. Chúng ta cần lưu ý các bài tập minh họa vì đây là các bài toán ở dạng thông hiểu giúp chúng ta làm quen trong việc thao tác tính toán. Cần nắm vững kiến thức này vì nội dung này trong kỳ thi THPTQG có bài tập ở mức ứng dụng; ứng dụng cao.
Chịu bổn phận nội dung: GV Nguyễn Thị Trang
Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp