Đường Tròn Ngoại Tiếp Tam Giác & Những Kiến Thức cần biết

Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Đường Tròn Ngoại Tiếp Tam Giác & Những Kiến Thức cần biết. Bài viết duong tron ngoai tiep tam giac la giao diem cua tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.

Đường tròn ngoại tiếp tam giác là tổng hợp các kiến thức từ khái niệm, tính chất, các kiến thức tác động và các dạng bài tập. Giúp Cả nhà học sinh có thể hiểu thật rõ về đường tròn ngoại tiếp của tam giác, từ đó nắm vững các kiến thức và giải đước tất cả những bài toán về đường tròn ngoại tiếp các tam giác.

Bạn Đang Xem: Đường Tròn Ngoại Tiếp Tam Giác & Những Kiến Thức cần biết

1. Định nghĩa đường tròn ngoại tiếp tam giác

Đường tròn ngoại tiếp của một tam giác được hiểu là đường tròn tiếp xúc bên phía ngoài của tam giác. cho nên vì thế ta có định nghĩa: Đường tròn ngoại tiếp tam giác là đường tròn đi qua 3 đỉnh của một tam giác. Tâm của đường tròn ngoại tiếp của tam giác được xác định là giao điểm của 3 đường trung trực của tam giác đó. Bên cạnh, đó thì chúng ta còn có đường tròn nội tiếp tam giác sẽ tìm hiểu ở phần sau nhé.

Đường tròn ngoại tiếp tam giác còn có thể được gọi với một tên thường gọi khác là tam giác nội tiếp đường tròn (hay tam giác nằm trong đường tròn).

Xem Thêm  Adolf Hitler – Chân dung trùm phát xít – Cảm nhận riêng của ngòi viết

ve-duong-tron-ngoai-tiep-cua-tam-giac

Bức Ảnh cụ thể về đường tròn ngoại tiếp của tam giác

Khi tiến hành nối tâm O của đường tròn với 3 đỉnh của tam giác ABC thì sẽ có được các đường thẳng : OA = OB = OC. Đó chính là bán kính của đường tròn ngoại tiếp tam giác ABC mà chúng ta cần tìm. Với công thức này, Cả nhà học sinh có thể áp dụng để giải quyết khá nhiều các dạng bài tương tác đến đường tròn ngoại tiếp của tam giác.

2. Tính chất của đường tròn ngoại tiếp tam giác

Với đường tròn ngoại tiếp tam giác sẽ có các tính chất rất quan trọng mà Anh chị em học sinh cần nắm thật kỹ sau đây:

  • Một tam giác thì chỉ có một và duy nhất một đường tròn ngoại tiếp.
  • Giao điểm của ba đường trung trực của một tam giác bất kì chính là tâm của đường tròn ngoại tiếp tam giác đó.
  • Đối với tam giác vuông thì trung điểm của cạnh huyền tam giác đó chính là tâm của đường tròn ngoại tiếp của tam giác.
  • Với một tam giác đều thì tâm đường tròn ngoại tiếp và nội tiếp của tam giác đó sẽ cùng là 1 điểm.

3. Một số kiến thức khác về đường tròn ngoại tiếp tam giác

Bên cạnh các kiến thức căn bản về đường tròn ngoại tiếp tam giác. Thì Cả nhà học sinh cũng cần trang bị thêm cho bản thân một số kiến thức lý thuyết nâng cao về đường tròn ngoại tiếp của tam giác để có thể chinh phục được thật nhiều các dạng toán ảnh hưởng.

3.1 Cách để có thể vẽ đường tròn ngoại tiếp tam giác

Để có thể xác định thật chính xác tâm của đường tròn ngoại tiếp tam giác thì Anh chị học sinh cần nhớ thật kỹ kiến thức sau đây: “ Tâm của đường tròn ngoại tiếp với bất kỳ một tam giác nào luôn là giao điểm của 3 đường trung trực tam giác đó”.

chính vì như thế khi muốn vẽ đường tròn ngoại tiếp của tam giác ABC thì đầu tiên chúng ta cần vẽ tam giác, tiếp đó kẻ các đường trung trực xuất phát từ 3 đỉnh của tam giác đó để có thể xác định tâm I của đường tròn. Cuối cùng chỉ cần lấy nửa đường kính R= IA= IB= IC. Vậy là chúng ta có thể vẽ được đường tròn ngoại tiếp tam giác rồi đó.

3.2 Cách để có thể xác định tâm đường tròn ngoại tiếp tam giác

Xem Thêm : cấu tạo của ti thể

Để có thể xác định tâm của đường tròn ngoại tiếp bất kỳ tam giác nào thì chúng ta đều cần xác định vị trí giao điểm 3 đường trung trực của tam giác đó. Bên cạnh đó,thì tâm của đường tròn ngoại tiếp của một tam giác cũng có thể là giao của hai đường trung trực. thế nên có hai cách để Anh chị có thể giải quyết các bài toán dạng này thật dễ dàng.

Xem Thêm  Sinh 10 Bài 16 Kết nối tri thức, chân mây sáng tạo, Cánh diều

Cách 1: Ta gọi I (x;y) là tâm của đường tròn ngoại tiếp tam giác ABC mà chúng ta cần tìm. Theo tính chất của đường tròn ngoại tiếp ta sẽ có IA = IB = IC = R. Hiện tại toạ độ xác định của tâm I (x;y) sẽ là nghiệm của phương trình:

IA^2 = IB^2

IA^2 = IC^2

Cách 2: Với cách này chúng ta sẽ cần ứng dụng kiến thức để viết phương trình hai đường trung trực của hai cạnh thuộc tam giác. Tiếp đó, cần xác định giao điểm của hai đường trung trực đó dựa trên những kiến thức mà chúng ta đã được học. Tâm của đường tròn ngoại tiếp tam giác chính là giao điểm của hai đường trung trực này.

Lưu ý: Với tam giác vuông thì tâm của đường tròn ngoại tiếp tam giác này chính là trung điểm của cạnh huyền. Cạnh huyền cũng chính là đường kính của đường tròn ngoại tiếp của tam giác đó.

3.2 Phương trình chi tiết của đường tròn ngoại tiếp tam giác

Một số dạng toán nâng cao sẽ yêu cầu Anh chị học sinh phải viết được phương trình của đường tròn ngoại tiếp tam giác. Vừa mới nghe qua thì có thể các học sinh sẽ thấy đây là một dạng bài khá khó. Tuy nhiên, chỉ cần nắm vững các bước sau đây thì việc giải bài toán này sẽ khá dễ dàng:

  • Bước 1: Cần gán tọa độ các đỉnh của tam giác nội tiếp đường tròn &o phương trình có ẩn a,b,c. Do khoảng cách từ tâm đường tròn đến các đỉnh chính là nửa đường kính nên các đỉnh thuộc hay nằm trên đường tròn ngoại tiếp. Vì thế mà tọa độ của các đỉnh sẽ thoả mãn phương trình mà chúng ta cần tìm.
  • Bước 2: Tiến hành giải hệ phương trình đã thực hiện thay thế các đỉnh ở trên để tìm ra các kết quả a,b,c
  • Bước 3: Do A, B và C thuộc đường tròn nên ta có hệ phương trình:

Phương trình chi tiết của đường tròn ngoại tiếp của tam giác

=> Sau khi giải hệ phương trình trên ta sẽ xác định được a, b, c.

3.3 cách tính nửa đường kính đường tròn ngoại tiếp tam giác chuẩn nhất

Đây là dạng bài khá thường gặp gỡ trong các kỳ thi kiểm tra định kỳ. Do đó, Cả nhà học sinh cần nắm rõ và chi tiết cách làm sau đây để hoàn thành bài thi một cách cao nhất.

Ví dụ: Với đề bài cho tam giác ABC có các cạnh là AB, AC và BC. Thay lần lượt các cạnh AB, AC và BC thành các ẩn a,b,c của phương trình. Ta sẽ tính được bán kính ngoại tiếp của tam giác ABC theo công thức sau:

Xem Thêm : Sinh năm 2008 mệnh gì? Tuổi Mậu Tý Hợp tuổi nào & Màu gì?

Xem Thêm  Công thức tính diện tích hình chữ nhật và bài tập minh hoạ

Công thức chi tiết để tính bán kính của đường tròn ngoại tiếp của tam giác

Công thức chi tiết để tính bán kính của đường tròn ngoại tiếp của tam giác

4. Một số bài tập về đường tròn ngoại tiếp tam giác

Dưới đây, chúng tôi sẽ giới thiệu đến Anh chị em một số bài toán về đường tròn ngoại tiếp tam giác để các bạn hiểu và hoàn thành các bài tập một cách cực tốt.

Bài 1: Viết phương trình đường tròn nội tiếp của tam giác ABC khi đã cho sẵn tọa độ của 3 đỉnh A(-1;3); B(5;1); C(-2;3)

Bài 2: Cho tam giác ABC đã biết A(1;3), B(-1;1), C(2;2). Tìm tọa độ của tâm đường tròn ngoại tiếp của tam giác ABC.

Bài 3: Cho tam giác ABC đều với cạnh bằng 8cm. Xác định bán kính và tâm của đường tròn ngoại tiếp của tam giác ABC?

Bài 4: Cho tam giác ABC đều với cạnh bằng 10cm. Xác định bán kính và tâm của đường tròn ngoại tiếp của tam giác ABC?

Bài 5: Cho tam giác ABC vuông tại A, và AB=6 cm, BC=8 cm,. Xác định tâm và bán kính đường tròn ngoại tiếp tam giác ABC, Tính bán kính đường tròn ngoại tiếp của tam giác bằng bao lăm?

Bài 6: Cho tam giác MNP có ba góc nhọn nội tiếp trong đường tròn (O; R). Ba đường của tam giác là MF, NE và PD cắt nhau tại H. Chứng minh tứ giác NDEP là tứ giác nội tiếp.

Trên đây, chúng tôi đã giúp các bạn học sinh có được tổng hợp các thông tin nên biết về đường tròn ngoại tiếp tam giác. Mong rằng với những thông tin này sẽ giúp các học sinh có thêm cho mình hành trang hữu dụng cho môn toán. Đừng quên theo dõi chúng tôi để khám phá thêm thật nhiều những kiến thức toán học có lợi nhé.

 

Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp

Recommended For You

About the Author: badmin

Leave a Reply

Your email address will not be published. Required fields are marked *