Đường trung trực: Định nghĩa, tính chất và bài tập – Ôn tập toán lớp 7

Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Đường trung trực: Định nghĩa, tính chất và bài tập – Ôn tập toán lớp 7. Bài viết dinh nghia duong trung truc tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.

Đường trung trực là kiến thức Toán học quan trọng trong chương trình môn Toán lớp 7, 8. Tuy nhiên, nhiều bạn vẫn chưa biết đường trung trực là gì, tính chất đường trung trực như thế nào và cách giải bài tập. chính vì vậy hãy cùng Download.vn theo dõi bài viết dưới đây nhé.

Bạn Đang Xem: Đường trung trực: Định nghĩa, tính chất và bài tập – Ôn tập toán lớp 7

Tài liệu bao gồm toàn bộ kiến thức về khái niệm, tính chất đường trung trực, các dạng toán thường gặp kèm theo một ví dụ minh họa. Tài liệu được biên soạn theo chương trình sách giáo khoa hiện hành nhằm giúp cho các em học sinh có tài liệu tham khảo thêm để ôn tập, củng cố kiến thức. Đồng thời ứng dụng để làm những bài tập có dạng tương tự hoặc nâng cao đạt kết quả tốt. Bên cạnh đó Cả nhà xem thêm cách chứng minh 3 điểm thẳng hàng.

I. Đường trung trực là gì?

Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng gọi là đường trung trực của đoạn thẳng ấy.

Định lý 1: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

GT: d là trung trực của AB, M ∈ d

=> KL: MA = MB

Định lí 2:

Điểm cách đều hai đầu mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó

Nhận xét: Tập hợp các điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.

II. Tính chất đường trung trực

2.1. Tính chất đường trung trực của một đoạn thẳng

Trên hình vẽ trên, dd là đường trung trực của đoạn thẳng AB.AB. Ta cũng nói: AA đối xứng với BB qua d.d.

Nhận xét:

Tập hợp các điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.

Xem Thêm  TOP 39 mẫu Nghị luận về lòng gan góc (2023) SIÊU HAY

2.2. Tính chất ba đường trung trực của tam giác

Trên hình, điểm OO là giao điểm các đường trung trực của ΔABC.ΔABC.

Ta có OA=OB=OC.OA=OB=OC. Điểm OO là tâm đường tròn ngoại tiếp ΔABC.ΔABC.

III. Các dạng toán thường gặp

Dạng 1: Chứng minh đường trung trực của một đoạn thẳng

– Phương pháp:

Để chúng minh dd là đường trung trực của đoạn thẳng ABAB, ta chứng minh dd chứa hai điểm cách đều AA và BB hoặc dùng định nghĩa đường trung trực.

Dạng 2: Chứng minh hai đoạn thẳng bằng nhau

– Phương pháp:

Ta sử dụng định lý: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.”

Dạng 3: Bài toán về giá trị thấp nhất

Xem Thêm : Bùi Tiến Dũng Là Ai? Tiểu Sử, Sự Nghiệp Của Hậu Vệ Tiến Dũng

Phương pháp:

– Sử dụng tính chất đường trung trực để thay độ dài một đoạn thẳng thành độ dài một đoạn thẳng khác bằng nó.

– Sử dụng bất đẳng thức tam giác để tìm giá trị thấp nhất.

Dạng 4: Xác định tâm đường tròn ngoại tiếp tam giác

Xem Thêm : Bùi Tiến Dũng Là Ai? Tiểu Sử, Sự Nghiệp Của Hậu Vệ Tiến Dũng

Phương pháp:

Sử dụng tính chất giao điểm các đường trung trực của tam giác

Định lý: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Dạng 5: Bài toán ảnh hưởng đến đường trung trực đối với tam giác cân

Xem Thêm : Bùi Tiến Dũng Là Ai? Tiểu Sử, Sự Nghiệp Của Hậu Vệ Tiến Dũng

Phương pháp:

Chú ý rằng trong tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến , đường phân giác ứng với cạnh đáy này.

Dạng 6: Bài toán liên quan đến đường trung trực đối với tam giác vuông

Xem Thêm : Bùi Tiến Dũng Là Ai? Tiểu Sử, Sự Nghiệp Của Hậu Vệ Tiến Dũng

Phương pháp:

Ta chú ý rằng: Trong tam giác vuông, giao điểm các đường trung trực là trung điểm cạnh huyền

IV. Một số câu hỏi thường gặp về đường trung trực

Số đường trung trực trong một đoạn thẳng?

Vì đường trung trực là đường thẳng đi qua trung điểm và vuông góc với đoạn thẳng. Mà mỗi đoạn thẳng chỉ có duy nhất một điểm là trung điểm Chính bởi mỗi đoạn thẳng có duy nhất 1 đường trung trực.

Cách viết phương trình đường trung trực của đoạn thẳng

Khi tìm hiểu về định nghĩa đường trung trực của đoạn thẳng, ta cũng cần biết cách viết phương trình đường trung trực của đoạn thẳng như sau:

Bước 1. Ta tìm vectơ pháp tuyến của đường trung trực và một điểm mà nó đi qua.

Bước 2. Ta dựa &o định lý 1: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Nghĩa là nếu điểm M thuộc đường thẳng AB thì thì MA = MB.

Xem Thêm  Hướng dẫn Azota.vn đăng nhập chi tiết nhất hiện giờ 2023

Ví dụ 1: Gọi M là điểm nằm trên đường trung trực của đoạn thẳng AB. Nếu MA có độ dài 5cm thì độ dài MB bằng bao lăm?

Giải:

Vì điểm M nằm trên đường trung trực của đoạn thẳng AB nên theo định lí về tính chất của các điểm thuộc đường trung trực ta có MA = MB. Mà MA = 5cm (gt) suy ra MB = 5cm.

Ví dụ 2: Vẽ một đoạn thẳng MN, sau đó hãy dùng thước thẳng và compa để dựng đường trung trực của đoạn thẳng đó.

Ví dụ 3: Gọi M là điểm nằm trên đường trung trực của đoạn thẳng AB, cho đoạn thẳng MA có độ dài 5cm. Hỏi độ dài MB bằng bao lăm?

Ví dụ 3:

Chứng minh đường thẳng PQ được vẽ như trong hình 43 đúng là đường trung trực của đoạn thẳng MN.

Gợi ý: Sử dụng định líwidehat{M A N}=widehat{M B N}

Giải:

Ta có : Hai cung tròn tâm M và N có bán kính bằng nhau và cắt nhau tại P, Q.

Nên MP = NP và MQ = NQ

⇒ P; Q cách đều hai mút M, N của đoạn thẳng MN

nên theo định lí 2 : P; Q thuộc đường trung trực của MN

hay đường thẳng qua P, Q là đường trung trực của MN.

Vậy PQ là đường trung trực của MN.

Ví dụ 4

Cho ba tam giác cân ABC, DBC, EBC có chung đáy BC. Chứng minh ba điểm A, D, E thẳng hàng.

Gợi ý đáp án

Bài 1: Cho tam giác ABC cân tại A. Hai trung tuyến BM, CN cắt nhau tại I. Hai tia phân giác trong của góc B và C cắt nhau tại O.Hai đường trung trực của 2 cạnh AB và AC cắt nhau tại K.

a) Chứng minh: BM = CN.

b) Chứng minh OB = OC

c) Chứng minh những điểm A,O, I, K thẳng hàng.

Bài 2: Trên đường thẳng d là trung trực của đoạn thẳng AB lấy điểm M, N nằm ở hai nữa hai bề mặt đối nhau có bờ là đường thẳng AB.

Xem Thêm : Cách tra cứu điểm, kết quả học hành vnEdu.vn trên điện thoại, máy tính

a) Chứng minh

b) MN là tia phân giác của AMB.

Bài 3: Cho góc xOy = 50, điểm A nằm trong góc xOy. Vẽ điềm M sao cho Ox là trung trực của đoạn AN, vẽ điểm M sao cho Oy là trung trực của đoạn AM.

a) Chứng minh: OM = ON

b) Tính số đo

Bài 4: Cho 2 điểm A và B nằm trên cùng 1 mặt phảng có bờ là đường thẳng d. Vẽ điểm C sao cho d là trung trực của đường thẳng BC, AC cắt d tai E. Trên d lấy điểm M bất kỳ.

a) So sánh MA + MB và AC

b) Tìm vị trí của M trên d để MA + MB ngắn nhất

Bài 5: Cho tam giác ABC có góc A tù. Các đường trung trực của AB và AC cắt nhau tại O và cắt BC theo thứ tự ở D và E.

a) Các tam giác ABD, ACE là tam giác gì.

b) Đường tròn tâm O bán kinh OA đi qua những điểm nào trên hình vẽ?

Bài 6: Cho tam giác ABC vuông tại A ,đương cao AH. Vẽ đường trung trục của cạnh AC cát BC tai I và cát AC tai E.

Xem Thêm  Nhóm tính cách INTJ: Tư duy logic, chiến lược và tầm nhìn xa trông

a) Chứng minh IA = IB = IC.

b) Gọi M là trung điểm của đoạn AI, chứng minh MH = ME

c) BE cắt AI tại N, tính tỉ số của đoạn MN và AI

Bài 7: Cho 4 điểm A, B, C, D phân biệt. Với điều kiện nào sau đây thì đường thẳng AC là đường trung trực của đoạn thẳng BD ?

Bài 8: Gọi M là điểm nằm trên đường trung trực của đoạn thẳng AB . Cho MA =5cm. Hỏi độ dài MB bằng ?

Bài 9: Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB. Chứng minh ∆AMN = ∆BMN

Bài 10: Cho ba tam giác ABC, DBC, EBC có chung đáy BC . Chứng minh 3 điểm A, D, E thẳng hàng

Bài 11. Cho ΔABC cân tại A. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của ∠ACB ACB ACB ACB bank Á Châu. Tính các góc của ΔABC

Bài 12. Cho ΔABC cân tại A , có ∠A = 40°, đường trung trực của AB cắt BC tại D . Tính ∠CAD

Bài 13. Cho ΔABC cân tại A. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của ∠Ngân Hàng Á Châu. Tính các góc của ΔABC

Bài 14. Cho ΔABC vuông tại A, có ∠C = 30°, đường trung trực của BC cắt AC tại M. Em hãy chọn câu đúng:

A. BM là đường trung tuyến của ΔABC

B. BM = AB

C. BM là phân giác của ∠ABC

D. BM là đường trung trực của ΔABC

Bài 15.

Cho điểm C thuộc trung trực của đoạn thẳng AB. Biết CA = 10 cm. Độ dài đoạn thẳng CB là:

A. CB = 10 cm

B. CB = 20 cm

C. CB = 30 cm

D. CB = 40 cm

 

Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp

Recommended For You

About the Author: badmin

Leave a Reply

Your email address will not be published. Required fields are marked *