Nội dung chính
Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa cách tính bán kính đường tròn ngoại tiếp tam giác cực hay, chi tiết. Bài viết cong thuc tinh ban kinh duong tron ngoai tiep tam giac tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.
cách tính bán kính đường tròn ngoại tiếp tam giác cực hay, chi tiết
A. Phương pháp điệu
Phương pháp 1: Sử dụng đinh lý sin trong tam giác
Bạn Đang Xem: cách tính bán kính đường tròn ngoại tiếp tam giác cực hay, chi tiết
Cho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó:
Phương pháp 2: Sử dụng diện tích tam giác
Phương pháp 3: Sử dụng trong hệ tọa độ
– Tìm tọa độ tâm O của đường tròn ngoại tiếp tam giác ABC
– Tìm tọa độ một trong ba đỉnh A, B, C (nếu chưa có)
– Tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C, đây chính là bán kính cần tìm
R = OA = OB = OC.
Phương pháp 4: Sử dụng trong tam giác vuông (kiến thức lớp 9)
Tâm đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền, do đó nửa đường kính đường tròn ngoại tiếp tam giác vuông chính bằng nửa độ dài cạnh huyền.
B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC có góc B bằng 45° và AC = 4. Tính nửa đường kính đường tròn ngoại tiếp tam giác ABC.
Hướng áp giải:
Xem Thêm : Người ta nói sữa chua là một loại thực phẩm rất tẩm bổ có đúng
Gọi R là nửa đường kính đường tròn ngoại tiếp tam giác ABC.
Ta có: b = AC = 4
Áp dụng định lý sin trong tam giác ABC ta có:
Ví dụ 2: Cho tam giác ABC có AB = 3, AC = 5 và BC = 6. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Hướng áp giải:
Theo công thức Hê – rông, diện tích tam giác ABC là:
Bán kính đường tròn ngoại tiếp tam giác ABC là:
Ví dụ 3: Cho tam giác MNP có MN = 6, MP = 8 và PN = 10. Tính bán kính đường tròn ngoại tiếp tam giác MNP.
Hướng dẫn giải:
Ví dụ 4: Cho tam giác ABC có BC = 10. Gọi (I) là đường tròn có tâm I thuộc cạnh BC và tiếp xúc với các cạnh AB, AC lần lượt tại M và N. Biết đường tròn (I) có bán kính bằng 3 và 2IB = 3IC. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
+ Vì 2IB = 3IC
+ Vì M và N lần lượt là tiếp điểm của đường tròn tâm I với AB và AC
+ Mặt khác theo định lý Cô – sin trong tam giác ABC ta có:
Xem Thêm : Cùng tìm hiểu tại sao chúa Giêsu bị đóng đinh – chinaphilharmonic.org
Ví dụ 5: Cho tam giác ABC vuông tại A có AB = 1; AC = 4. Gọi M là trung điểm AC.
a) Tính diện tích tam giác ABC.
b) Tính bán kính R1 của đường tròn ngoại tiếp tam giác ABC.
c) Tính bán kính R2 của đường tròn ngoại tiếp tam giác CBM.
Hướng dẫn giải:
a) Tam giác ABC vuông tại A, nên diện tích tam giác ABC là:
b) Tam giác ABC vuông tại A, theo định lý Pytago ta có
BM2 = AB2 + AM2 = 12 + 22 = 5 (tam giác AMB vuông tại A)
Bán kính đường tròn ngoại tiếp tam giác CMB là:
tham khảo thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Công thức, phương pháp tính Diện tích tam giác cực hay, chi tiết
- Bài tập Công thức Heron tính diện tích tam giác cực hay, chi tiết
- Cách làm bài tập Giải tam giác lớp 10 cực hay, chi tiết
- phương pháp tính bán kính đường tròn nội tiếp tam giác cực hay, chi tiết
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 chân mây sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
bank trắc nghiệm lớp 10 tại khoahoc.vietjack.com
- Hơn 7500 câu trắc nghiệm Toán 10 có đáp án
- Hơn 5000 câu trắc nghiệm Hóa 10 có đáp án chi tiết
- Gần 4000 câu trắc nghiệm Vật lý 10 có đáp án
Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp