Đường tròn ngoại tiếp tam giác – Lý thuyết và một số bài tập áp dụng

Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Đường tròn ngoại tiếp tam giác – Lý thuyết và một số bài tập áp dụng. Bài viết duong tron ngoai tiep tam giac la tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.

Đường tròn ngoại tiếp tam giác là phần kiến thức cực kỳ quan trọng đối với Anh chị học sinh. Nắm được lý thuyết và thực hành các bài tập thúc đẩy đến chương trình học này sẽ giúp bạn dễ dàng chinh phục những bài tập khó của phần toán hình học. Đừng quên theo dõi bài viết ngay dưới đây để nhanh chóng bỏ túi các kiến thức bổ ích về đường tròn ngoại tiếp tam giác nhé!

Bạn Đang Xem: Đường tròn ngoại tiếp tam giác – Lý thuyết và một số bài tập áp dụng

Thế nào là đường tròn ngoại tiếp tam giác?

‘Đường tròn ngoại tiếp tam giác là phần kiến thức quan trọng, là tiền đề để chinh phục nhiều bài tập hóc búa trong chương trình hình học. Anh chị cần ghi nhớ thuộc lòng những kiến thức này để giải quyết mọi kiến thức cần có.

Khái niệm đường tròn ngoại tiếp tam giác căn bản

Trên thực tế, đường tròn ngoại tiếp tam giác chính là đường tròn đi qua ba đỉnh của một tam giác. Ngoài cách gọi trên, phần kiến thức này còn được biết tới với tên gọi khác là tam giác nội tiếp đường tròn.

Xem Thêm  Năm 2024 Mệnh Gì, Con Gì? 2024 Hợp Với Tuổi, Màu Sắc Nào?

Nối tâm O của đường tròn với 3 đỉnh của tam giác đã cho ABC, chúng ta thu được: OA = OB = OC. Đây cũng chính là nửa đường kính của đường tròn ngoại tiếp ABC. Áp dụng công thức này, Anh chị học sinh có thể giải quyết rất nhiều bài toán thúc đẩy đến kiến thức có lợi này.

Đường tròn ngoại tiếp tam giác
Đường tròn ngoại tiếp tam giác

Khái niệm xoay quanh kiến thức đường tròn ngoại tiếp tam giác

Tính chất của đường tròn ngoại tiếp tam giác

Khi học phần bài đường tròn ngoại tiếp tam giác, Cả nhà học sinh cần nắm lòng một số tính chất cực kỳ quan trọng sau đây:

  • Mỗi tam giác chỉ có duy nhất một đường tròn ngoại tiếp
  • Tâm của đường tròn ngoại tiếp tam giác chính là giao điểm của ba đường trung trực của chính tam giác đó.
  • Tâm của đường tròn ngoại tiếp tam giác chính là trung điểm của cạnh huyền tam giác đó.
  • Trong một tam giác đều, tâm đường tròn ngoại tiếp cũng chính là tâm đường tròn nội tiếp của tam giác.

Bài tập thực hành về đường tròn ngoại tiếp tam giác

Trong bài viết này, chúng tôi sẽ gửi đến Anh chị học sinh một số ví dụ các bài toán liên quan đến kiến thức đường tròn ngoại tiếp tam giác để Anh chị em hiểu bài 1 cách chi tiết nhất. Dưới đây sẽ là các ví dụ mà học sinh không nên bỏ lỡ:

Ví dụ toán tiên phong hàng đầu: Viết phương trình đường tròn nội tiếp của tam giác ABC khi đã cho sẵn tọa độ của 3 đỉnh

Đề bài dạng toán hàng đầu: Viết phương trình đường tròn ngoại tiếp tam giác A, B, C được biết A(-1;2); B(6;1); C(-2;5)

Hướng áp giải ví dụ toán dạng 1:

Gọi phương trình đường tròn ngoại tiếp tam giác ABC là:

( C ) + –

Do 3 điểm A, B, C cùng thuộc đường tròn nên nếu chúng ta thực hiện thay tọa độ A, B, C lần lượt &o phương trình đường tròn (C) , bây giờ ta được hệ phương trình:

Xem Thêm : 1m bằng bao lăm cm, dm, mm, km

bởi vậy, Phương trình đường tròn ngoại tiếp tam giác ABC với tâm I (3;5) và nửa đường kính R = 5 là:

+ = 25 hay + = 25

Vi dụ toán dạng số 2: ứng dụng các tính chất đã học tìm tâm của đường tròn ngoại tiếp khi biết tọa độ ba đỉnh

Đề bài dạng toán số 2: Cho tam giác ABC đã biết A(1;2), B(-1;0), C(3;2). Tìm tọa độ tâm của đường tròn ngoại tiếp của tam giác ABC

Xem Thêm  Mã CVV/CVC trên thẻ Mastercard, Visa, JCB là gì? Chức năng của

Hướng áp giải bài toán số 2

Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 9)

Vì I là tâm của đường tròn ngoại tiếp tam giác ABC nên ta suy ra:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 10)

Vậy tọa độ tâm của đường tròn ngoại tiếp tam giác ABC là I(2;-1)

Vi dụ toán dạng số 3: Tìm nửa đường kính đường tròn nội tiếp tam giác

Đề bài toán dạng số 3: Tam giác ABC đã cho biết cạnh AB = 3, AC = 7, BC = 8. Tính bán kính đường tròn ngoại tiếp tam giác ABC với các thông số đã cho.

Hướng dẫn giải toán dạng số 3

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 11)

Các nội dung lý thuyết ảnh hưởng khác

Xem Thêm : Hài ” Năm Nổ Về Làng – Top 19 Hài Tấn Beo Về Làng Hay Nhất 2022

Ngoài những kiến thức cơ bản về đường tròn ngoại tiếp tam giác thì Anh chị em có thể tham khảo những kiến thức lý thuyết nâng cao để chinh phục mọi bài toán ảnh hưởng.

Hướng dẫn xác định tâm đường tròn ngoại tiếp đơn giản, nhanh chóng

Ngoài việc nắm vững lý thuyết và tính chất thì Anh chị cũng có thể xem thêm một số kiến thức nâng cao liên quan để chiếm lĩnh các bài toán liên quan đến kiến thức đường tròn ngoại tiếp 1 cách dễ dàng.

word image 21240 6

Củng cố kiến thức xác định tâm đường tròn ngoại tiếp tam giác

Để xác định tâm của đường tròn ngoại tiếp tam giác, chúng ta cần xác định vị trí giao điểm của 3 đường trung trực của các cạnh tam giác. Bên cạnh đó, tâm của đường tròn ngoại tiếp tam giác cũng có thể là giao của hai đường trung trực. Có hai cách để Anh chị em có thể dễ dàng giải quyết dạng toán này vô cùng dễ dàng, cụ thể:

  • Cách 1: Gọi tâm cần tìm của đường tròn ngoại tiếp tam giác ABC là I (x;y). Theo tính chất ta có IA = IB = IC = R. giờ đây toạ độ tâm I (x;y) sẽ là nghiệm của phương trình
  • Cách 2: ứng dụng kiến thức để viết phương trình hai đường trung trực của hai cạnh thuộc tam giác. Tiếp đến Các bạn học sinh tiến hành tìm giao điểm của hai đường trung trực này bằng những kiến thức đã học. Giao điểm của hai đường trung trực này cũng chính là tâm của đường tròn ngoại tiếp tam giác.

Phương trình đường tròn ngoại tiếp tam giác

Nhiều bài toán nâng cao yêu cầu học sinh phải đưa ra phương trình đường tròn ngoại tiếp tam giác. Lần lượt thực hiện tuần tự 4 bước sau, dạng bài toán này sẽ không còn khó khăn đối với học sinh:

  • Bước 1: Gán toạ độ mỗi đỉnh &o phương trình có ẩn a,b,c. Sở dĩ thực hiện được điều này bởi cac đỉnh thuộc đường tròn ngoại tiếp nên toạ độ các đỉnh sẽ thoả mãn phương trình cần tìm.
  • Bước 2: Giải hệ phương trình đã thay thế các đỉnh ở trên để tìm ra kết quả a,b,c
  • Bước 3: Do A, B và C ∈ C nên ta có hệ phương trình:
Xem Thêm  Tiểu sử SOFM: Thần Đồng Sofm Là Ai? | Phegame.Net

=> Giải hệ phương trình này ta xác định được a, b, c.

Kiến thức về bài toán tính bán kính đường tròn ngoại tiếp tam giác

Bài toán bán kính đường tròn ngoại tiếp tam giác cũng là kiến thức thường gặp gỡ trong các kỳ thi kiểm tra định kỳ. cho nên vì thế, các bạn học sinh cần nắm rõ cách làm sau đây để tránh lúng túng khi bước &o phòng thi.

Đề bài cho tam giác ABC với 3 cạnh AB, AC và BC. Lần lượt thay AB, AC và BC thành các ẩn a,b,c trong phương trình. Ta có bán kính ngoại tiếp của tam giác ABC sẽ là :

R =

word image 21240 9

Một số kiến thức tác động đến kiến thức đường tròn ngoại tiếp tam giác

Hy vọng bài viết trên đã gửi tới các bạn học sinh các kiến thức bổ ích về đường tròn ngoại tiếp tam giác. Hãy chăm chỉ tìm hiểu thêm thêm nhiều dạng bài ảnh hưởng đến kiến thức này để không bị bỡ ngỡ mỗi khi gặp dạng toán tương tự nhé! Chúc các em học sinh chinh phục môn toán một cách dễ dàng và hiệu quả!

 

Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp

Recommended For You

About the Author: badmin

Leave a Reply

Your email address will not be published. Required fields are marked *