Nội dung chính
Chúng tôi rất vui được chia sẻ kiến thức sâu sắc về từ khóa Công thức, phương pháp tính độ dài đường trung tuyến cực hay, chi tiết. Bài viết cong thuc duong trung tuyen tập trung giải thích ý nghĩa, vai trò và ứng dụng của từ khóa này trong tối ưu hóa nội dung web và chiến dịch tiếp thị. Chúng tôi cung cấp phương pháp tìm kiếm, phân tích từ khóa, kèm theo chiến lược và công cụ hữu ích. Hy vọng thông tin này sẽ giúp bạn xây dựng chiến lược thành công và thu hút người dùng.
- Người tuổi Tỵ hợp với tuổi nào trong làm ăn, hôn nhân? – tokyometro
- Câu 16. Diện tích phần đất liền nước ta là : A. 360.991 km2 B. 339
- Top 9 bài phân tích Chuyện chức phán sự đền Tản Viên hay chọn lọc
- Điểm GPA, CPA là gì? cách tính và quy đổi thang điểm GPA chính xác
- [Tip] Cách Học Giỏi Toán Lớp 10 Hiệu Quả (Đại Số & Hình Học)
Công thức, phương pháp tính độ dài đường trung tuyến cực hay, chi tiết
A. Phương pháp điệu
Áp dụng công thức tính độ dài đường trung tuyến:
Bạn Đang Xem: Công thức, phương pháp tính độ dài đường trung tuyến cực hay, chi tiết
Cho tam giác ABC có các cạnh BC = a, CA = b và AB = c. Gọi ma; mb; mc là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A, B và C của tam giác. Khi đó
B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC có BC = a = 10 cm, CA = b = 8 cm, AB = c = 7 cm. Tính độ dài các đường trung tuyến của tam giác ABC.
Hướng áp điệu:
Gọi độ dài trung tuyến từ các đỉnh A, B, C của tam giác ABC lần lượt là ma; mb; mc.
Áp dụng công thức trung tuyến ta có:
Vì độ dài các đường trung tuyến (là độ dài đoạn thẳng) nên nó luôn dương, do đó:
Ví dụ 2: Cho tam giác ABC, có BC = a, CA = b và AB = c. Chứng minh rằng nếu b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau.
Hướng áp giải:
Xem Thêm : Điều khác biệt giữa 127.0.0.1 và Localhost là gì? – Totolink.vn
Gọi D và E lần lượt là trung điểm của AB và AC, G là trọng tâm tam giác ABC.
Đặt BE = mb, CD = mc
Áp dụng công thức trung tuyến trong tam giác ABC ta có:
Vậy b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau. (đpcm)
Ví dụ 3: Cho tam giác ABC có AB = 3, BC = 5 và độ dài đường trung tuyến . Độ dài AC là:
Hướng áp giải:
BM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có:
Đáp án B
Ví dụ 4: Tam giác ABC có BC = 6, AC = , AB = 2. M là một điểm trên cạnh BC sao cho BM = 3. Giá trị của AM là?
Hướng áp giải:
Xem Thêm : Cảm Nghĩ Về Mẹ Lớp 7 15 Bài Văn Biểu Cảm Hay Nhất
Mà M thuộc BC.
Do đó M là trung điểm của BC => AM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có.
Đáp án C
Ví dụ 5: Gọi S = ma2 + mb2 + mc2 là tổng bình phương độ dài ba đường trung tuyến của tam giác ABC. Khẳng định nào sau đây là đúng? (cho BC = a, CA = b, AB = c)
Hướng dẫn giải:
Áp dụng công thức trung tuyến trong tam giác ABC ta có:
Đáp án A
tìm hiểu thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Cách chứng minh Hai vecto vuông góc cực hay, chi tiết
- Tìm m để góc giữa hai vecto bằng một số cho trước cực hay (45 độ, góc nhọn, góc tù)
- Cách giải bài tập về Định lí Cô-sin trong tam giác cực hay, chi tiết
- Cách giải bài tập về Định lí Sin trong tam giác cực hay, chi tiết
- Công thức, cách tính Diện tích tam giác cực hay, chi tiết
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 chân mây sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com
- Hơn 7500 câu trắc nghiệm Toán 10 có đáp án
- Hơn 5000 câu trắc nghiệm Hóa 10 có đáp án chi tiết
- Gần 4000 câu trắc nghiệm Vật lý 10 có đáp án
Nguồn: https://kengencyclopedia.org
Danh mục: Hỏi Đáp